مدلهای زبانی، در حل وظایف جدید با تنها چند مثال یا دستورالعمل متنی تواناییهای قابل توجهی دارند، به ویژه در مقیاس بزرگ. در عین حال، برای عملکردهای پایهای مثل محاسبات یا جستجوی factها دچار مشکل هستند، جایی که مدلهای سادهتر و کوچکتر بسیار عالی عمل میکنند. این مقاله با معرفی Toolformer، نشون میده که مدلهای زبانی چطوری میتونند خودشون رو با استفاده از APIهای ساده، آموزش بدن تا بهترین راهکار رو داشته باشند. مدل Toolformer، آموزش میبینه که تصمیم بگیره کدام API رو فراخوانی کنه، چه زمانی اونها رو فراخوانی کنه، چه آرگومانهایی رو منتقل کنه و چطوری به بهترین شکل از ترکیب نتایج برای پیشبینی توکن بعدی استفاده کنه.
این APIهای گنجانده شده در Toolformer شامل ماشین حساب، سیستم پرسش و پاسخ، موتور جستجو، سیستم ترجمه و یک تقویمه. آموزش این مدل به صورت خودبخودی و خودآموزه، که تنها به چند تا نمونه برای هر API نیاز داره. یعنی با استفاده از تعداد انگشت شماری نمونههای نوشته شده توسط انسان از فراخوانی یک API، به مدل این امکان داده میشه که برای یک مجموعه دادهی زبانی بزرگ، کاندیدهای فرخوانی API رو مرتبط با محتوای متن ایجاد کند (in-context learning). سپس با استفاده از یک تابع self-supervised loss مشخص میشه کدام فراخوانی APIها واقعا به مدل برای پیشبینی توکن بعدی کمک میکنه. در نهایت مدل روی فراخوانهای API ای که مفیدند finetune میشه.
مدل Toolformer، عملکرد zero-shot رو برای مدل GPT-J با 6.7B پارامتر به طور قابل توجهی بهبود می بخشه و باعث میشه حتی از مدل بسیار بزرگتر GPT-3 در طیف وسیعی از وظایف مختلف پاییندستی (یا همان downstream tasks) بهتر عمل کنه، بدون اینکه تواناهایی مدل سازی زبان اصلی را ازدست بده.
مدلهای زبانی، در حل وظایف جدید با تنها چند مثال یا دستورالعمل متنی تواناییهای قابل توجهی دارند، به ویژه در مقیاس بزرگ. در عین حال، برای عملکردهای پایهای مثل محاسبات یا جستجوی factها دچار مشکل هستند، جایی که مدلهای سادهتر و کوچکتر بسیار عالی عمل میکنند. این مقاله با معرفی Toolformer، نشون میده که مدلهای زبانی چطوری میتونند خودشون رو با استفاده از APIهای ساده، آموزش بدن تا بهترین راهکار رو داشته باشند. مدل Toolformer، آموزش میبینه که تصمیم بگیره کدام API رو فراخوانی کنه، چه زمانی اونها رو فراخوانی کنه، چه آرگومانهایی رو منتقل کنه و چطوری به بهترین شکل از ترکیب نتایج برای پیشبینی توکن بعدی استفاده کنه.
این APIهای گنجانده شده در Toolformer شامل ماشین حساب، سیستم پرسش و پاسخ، موتور جستجو، سیستم ترجمه و یک تقویمه. آموزش این مدل به صورت خودبخودی و خودآموزه، که تنها به چند تا نمونه برای هر API نیاز داره. یعنی با استفاده از تعداد انگشت شماری نمونههای نوشته شده توسط انسان از فراخوانی یک API، به مدل این امکان داده میشه که برای یک مجموعه دادهی زبانی بزرگ، کاندیدهای فرخوانی API رو مرتبط با محتوای متن ایجاد کند (in-context learning). سپس با استفاده از یک تابع self-supervised loss مشخص میشه کدام فراخوانی APIها واقعا به مدل برای پیشبینی توکن بعدی کمک میکنه. در نهایت مدل روی فراخوانهای API ای که مفیدند finetune میشه.
مدل Toolformer، عملکرد zero-shot رو برای مدل GPT-J با 6.7B پارامتر به طور قابل توجهی بهبود می بخشه و باعث میشه حتی از مدل بسیار بزرگتر GPT-3 در طیف وسیعی از وظایف مختلف پاییندستی (یا همان downstream tasks) بهتر عمل کنه، بدون اینکه تواناهایی مدل سازی زبان اصلی را ازدست بده.
From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.
At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?